Skip to contents

create_iycf_plaus

Usage

create_iycf_plaus(
  df_iycf,
  age_months = NULL,
  sex = NULL,
  iycf_8 = NULL,
  iycf_caregiver = NULL,
  yes_value_caregiver = NULL,
  no_value_caregiver = NULL,
  exp_prevalence_mad = NULL,
  exp_sex_ratio = NULL,
  exp_ratio_under6m_6to23m = NULL,
  grouping = NULL,
  uuid = "uuid",
  short_report = FALSE,
  file_path = NULL
)

Arguments

df_iycf

dataframe output of the check_iycf_flag function

age_months

the name of the variable that indicates the age in month of the child

sex

the name of the variable that indicates the sex of the child

iycf_8

the name of the variable that indicates if the meal frequency the child had yesterday. By default "iycf_8"

iycf_caregiver

the name of the variable that indicates if the caregiver of the child is present. By default NULL

yes_value_caregiver

the value of the choice "yes" to all the caregiver column

no_value_caregiver

the value of the choice "no" to all the caregiver column

exp_prevalence_mad

Expected prevalence for Minimum Acceptable Diet (MAD) By default: 0.3:0.7

exp_sex_ratio

Expected sex ratio. By default: 1:1

exp_ratio_under6m_6to23m

Expected age ratio between children under 6 month, and children between 6 and 23 months. By default: 1:4

grouping

the name of the variable that indicates the grouping variable - usually "enumerator"

uuid

uuid variable

short_report

Inputs a boolean value TRUE or FALSE to return just key variables. If FALSE, returns a dataframe of all the variables calculated.

file_path

Inputs an optional character value specifying the file location to save a copy of the results.

Value

a dataframe with all IYCF related plausibility columns

Examples

if (FALSE) { # \dontrun{
  create_iycf_plaus(df_iycf)
} # }