Skip to contents

If not list of analysis (loa) is provided, the analysis will run on the overall dataset, and all the grouping variables set.

Usage

create_analysis(design, loa = NULL, group_var = NULL, sm_separator = ".")

Arguments

design

Survey design object created with srvyr::as_survey or as_survey_design

loa

list of analysis: Default is NULL. If provided it will be used to create the analysis.

group_var

Default is NULL. If provided, it will first create a list of analysis and then will run the analysis. It should be a vector.

sm_separator

Separator for choice multiple questions. The default is "."

Value

A list with 3 items:

  • The results table in a long format with the analysis key

  • The dataset that was used

  • The list of analysis that was used

Details

The loa should contains the following columns :

  • analysis_type: analysis type to be perform. At the moment mean, median, prop_select_one, and ratio are available.

  • analysis_var: analysis variable to be used as string.

  • group_var: The grouping variable as string. NA if there is no grouping variable. If a combination of grouping variable should be used together it should be 1 string character separated with a ",". i.e. c("admin1", "admin2") and "admin1, admin2" are different.

    • c("admin1", "admin2") : will perform the analysis grouping once by admin1, and once by admin2

    • "admin1, admin2" : will perform the analysis grouping once by admin1 and admin2

  • level: confidence level to be used. If the column does not exists, .95 will be used. It can also include a column level, if not provided .95 will be set as default.

If ratios have to be performed, the loa should include the following columns as well:

  • analysis_var_numerator analysis_var_denominator numerator_NA_to_0 filter_denominator_0

Examples

create_analysis(
  design = srvyr::as_survey(analysistools_MSNA_template_data),
  loa = analysistools_MSNA_template_loa,
  sm_separator = "/"
)
#> Joining with `by = join_by(admin1)`
#> Joining with `by = join_by(wash_drinkingwatersource)`
#> Joining with `by = join_by(admin1, wash_drinkingwatersource)`
#> $results_table
#> # A tibble: 143 × 13
#>    analysis_type analysis_var analysis_var_value group_var group_var_value  stat
#>  * <chr>         <chr>        <chr>              <chr>     <chr>           <dbl>
#>  1 prop_select_… admin1       admin1a            NA        NA               0.31
#>  2 prop_select_… admin1       admin1b            NA        NA               0.27
#>  3 prop_select_… admin1       admin1c            NA        NA               0.42
#>  4 mean          income_v1_s… NA                 NA        NA              20.0 
#>  5 median        income_v1_s… NA                 NA        NA              20   
#>  6 mean          expenditure… NA                 NA        NA              20.1 
#>  7 median        expenditure… NA                 NA        NA              20   
#>  8 prop_select_… wash_drinki… borehole_tubewell  NA        NA               0.04
#>  9 prop_select_… wash_drinki… bottled_water      NA        NA               0.08
#> 10 prop_select_… wash_drinki… cart_with_tank_dr… NA        NA               0.05
#> # ℹ 133 more rows
#> # ℹ 7 more variables: stat_low <dbl>, stat_upp <dbl>, n <dbl>, n_total <dbl>,
#> #   n_w <dbl>, n_w_total <dbl>, analysis_key <chr>
#> 
#> $dataset
#> # A tibble: 100 × 449
#>    instance_name enum_gender hoh   respondent_able_to_answer respondent_age
#>    <lgl>         <chr>       <chr> <chr>                              <dbl>
#>  1 NA            male        no    yes                                   22
#>  2 NA            male        no    no                                    20
#>  3 NA            female      yes   yes                                   20
#>  4 NA            female      no    no                                    20
#>  5 NA            female      no    yes                                   21
#>  6 NA            female      no    no                                    22
#>  7 NA            other       yes   yes                                   18
#>  8 NA            male        yes   no                                    20
#>  9 NA            female      yes   yes                                   22
#> 10 NA            other       no    yes                                   20
#> # ℹ 90 more rows
#> # ℹ 444 more variables: respondent_gender <chr>, hoh_age <dbl>,
#> #   hoh_gender <chr>, hoh_civil_status <chr>, hoh_civil_status_other <chr>,
#> #   admin1 <chr>, admin2 <chr>, admin3 <chr>, admin4 <chr>, cluster_id <chr>,
#> #   hh_size <dbl>, parent_instance_name <lgl>, person_id <lgl>,
#> #   ind_gender <chr>, ind_age <dbl>, ind_relationship_hoh <chr>,
#> #   ind_relationship_hoh_other <chr>, ind_pos <lgl>, hh_number_men <dbl>, …
#> 
#> $loa
#>           analysis_type                       analysis_var group_var level
#> 1       prop_select_one                             admin1      <NA>  0.95
#> 2                  mean            income_v1_salaried_work      <NA>  0.95
#> 3                median            income_v1_salaried_work      <NA>  0.95
#> 4                  mean                   expenditure_debt      <NA>  0.95
#> 5                median                   expenditure_debt      <NA>  0.95
#> 6       prop_select_one           wash_drinkingwatersource      <NA>  0.95
#> 7  prop_select_multiple edu_learning_conditions_reasons_v1      <NA>  0.95
#> 8                  mean            income_v1_salaried_work    admin1  0.95
#> 9                median            income_v1_salaried_work    admin1  0.95
#> 10                 mean                   expenditure_debt    admin1  0.95
#> 11               median                   expenditure_debt    admin1  0.95
#> 12      prop_select_one           wash_drinkingwatersource    admin1  0.95
#> 13 prop_select_multiple edu_learning_conditions_reasons_v1    admin1  0.95
#> 
create_analysis(
  design = srvyr::as_survey(analysistools_MSNA_template_data),
  loa = analysistools_MSNA_template_loa_with_ratio,
  sm_separator = "/"
)
#> Joining with `by = join_by(admin1)`
#> Joining with `by = join_by(wash_drinkingwatersource)`
#> Joining with `by = join_by(admin1, wash_drinkingwatersource)`
#> $results_table
#> # A tibble: 147 × 13
#>    analysis_type   analysis_var     analysis_var_value group_var group_var_value
#>  * <chr>           <chr>            <chr>              <chr>     <chr>          
#>  1 prop_select_one admin1           admin1a            NA        NA             
#>  2 prop_select_one admin1           admin1b            NA        NA             
#>  3 prop_select_one admin1           admin1c            NA        NA             
#>  4 mean            income_v1_salar… NA                 NA        NA             
#>  5 median          income_v1_salar… NA                 NA        NA             
#>  6 mean            expenditure_debt NA                 NA        NA             
#>  7 median          expenditure_debt NA                 NA        NA             
#>  8 ratio           income_v1_salar… NA %/% NA          NA        NA             
#>  9 prop_select_one wash_drinkingwa… borehole_tubewell  NA        NA             
#> 10 prop_select_one wash_drinkingwa… bottled_water      NA        NA             
#> # ℹ 137 more rows
#> # ℹ 8 more variables: stat <dbl>, stat_low <dbl>, stat_upp <dbl>, n <dbl>,
#> #   n_total <dbl>, n_w <dbl>, n_w_total <dbl>, analysis_key <chr>
#> 
#> $dataset
#> # A tibble: 100 × 449
#>    instance_name enum_gender hoh   respondent_able_to_answer respondent_age
#>    <lgl>         <chr>       <chr> <chr>                              <dbl>
#>  1 NA            male        no    yes                                   22
#>  2 NA            male        no    no                                    20
#>  3 NA            female      yes   yes                                   20
#>  4 NA            female      no    no                                    20
#>  5 NA            female      no    yes                                   21
#>  6 NA            female      no    no                                    22
#>  7 NA            other       yes   yes                                   18
#>  8 NA            male        yes   no                                    20
#>  9 NA            female      yes   yes                                   22
#> 10 NA            other       no    yes                                   20
#> # ℹ 90 more rows
#> # ℹ 444 more variables: respondent_gender <chr>, hoh_age <dbl>,
#> #   hoh_gender <chr>, hoh_civil_status <chr>, hoh_civil_status_other <chr>,
#> #   admin1 <chr>, admin2 <chr>, admin3 <chr>, admin4 <chr>, cluster_id <chr>,
#> #   hh_size <dbl>, parent_instance_name <lgl>, person_id <lgl>,
#> #   ind_gender <chr>, ind_age <dbl>, ind_relationship_hoh <chr>,
#> #   ind_relationship_hoh_other <chr>, ind_pos <lgl>, hh_number_men <dbl>, …
#> 
#> $loa
#>           analysis_type                       analysis_var group_var level
#> 1       prop_select_one                             admin1      <NA>  0.95
#> 2                  mean            income_v1_salaried_work      <NA>  0.95
#> 3                median            income_v1_salaried_work      <NA>  0.95
#> 4                  mean                   expenditure_debt      <NA>  0.95
#> 5                median                   expenditure_debt      <NA>  0.95
#> 6                 ratio                               <NA>      <NA>  0.95
#> 7       prop_select_one           wash_drinkingwatersource      <NA>  0.95
#> 8  prop_select_multiple edu_learning_conditions_reasons_v1      <NA>  0.95
#> 9                  mean            income_v1_salaried_work    admin1  0.95
#> 10               median            income_v1_salaried_work    admin1  0.95
#> 11                 mean                   expenditure_debt    admin1  0.95
#> 12               median                   expenditure_debt    admin1  0.95
#> 13                ratio                               <NA>    admin1  0.95
#> 14      prop_select_one           wash_drinkingwatersource    admin1  0.95
#> 15 prop_select_multiple edu_learning_conditions_reasons_v1    admin1  0.95
#>     analysis_var_numerator analysis_var_denominator numerator_NA_to_0
#> 1                     <NA>                     <NA>                NA
#> 2                     <NA>                     <NA>                NA
#> 3                     <NA>                     <NA>                NA
#> 4                     <NA>                     <NA>                NA
#> 5                     <NA>                     <NA>                NA
#> 6  income_v1_salaried_work         expenditure_debt              TRUE
#> 7                     <NA>                     <NA>                NA
#> 8                     <NA>                     <NA>                NA
#> 9                     <NA>                     <NA>                NA
#> 10                    <NA>                     <NA>                NA
#> 11                    <NA>                     <NA>                NA
#> 12                    <NA>                     <NA>                NA
#> 13 income_v1_salaried_work         expenditure_debt              TRUE
#> 14                    <NA>                     <NA>                NA
#> 15                    <NA>                     <NA>                NA
#>    filter_denominator_0
#> 1                    NA
#> 2                    NA
#> 3                    NA
#> 4                    NA
#> 5                    NA
#> 6                  TRUE
#> 7                    NA
#> 8                    NA
#> 9                    NA
#> 10                   NA
#> 11                   NA
#> 12                   NA
#> 13                 TRUE
#> 14                   NA
#> 15                   NA
#> 
shorter_df <- analysistools_MSNA_template_data[, c(
  "admin1",
  "admin2",
  "expenditure_debt",
  "wash_drinkingwatersource"
)]
create_analysis(
  design = srvyr::as_survey(shorter_df),
  group_var = "admin1"
)
#> Joining with `by = join_by(type)`
#> Joining with `by = join_by(admin1)`
#> Joining with `by = join_by(admin2)`
#> Joining with `by = join_by(wash_drinkingwatersource)`
#> Joining with `by = join_by(admin1, admin2)`
#> Joining with `by = join_by(admin1, wash_drinkingwatersource)`
#> $results_table
#> # A tibble: 87 × 13
#>    analysis_type analysis_var analysis_var_value group_var group_var_value  stat
#>  * <chr>         <chr>        <chr>              <chr>     <chr>           <dbl>
#>  1 prop_select_… admin1       admin1a            NA        NA               0.31
#>  2 prop_select_… admin1       admin1b            NA        NA               0.27
#>  3 prop_select_… admin1       admin1c            NA        NA               0.42
#>  4 prop_select_… admin2       admin2a            NA        NA               0.3 
#>  5 prop_select_… admin2       admin2b            NA        NA               0.39
#>  6 prop_select_… admin2       admin2c            NA        NA               0.31
#>  7 mean          expenditure… NA                 NA        NA              20.1 
#>  8 median        expenditure… NA                 NA        NA              20   
#>  9 prop_select_… wash_drinki… borehole_tubewell  NA        NA               0.04
#> 10 prop_select_… wash_drinki… bottled_water      NA        NA               0.08
#> # ℹ 77 more rows
#> # ℹ 7 more variables: stat_low <dbl>, stat_upp <dbl>, n <int>, n_total <dbl>,
#> #   n_w <dbl>, n_w_total <dbl>, analysis_key <chr>
#> 
#> $dataset
#> # A tibble: 100 × 4
#>    admin1  admin2  expenditure_debt wash_drinkingwatersource
#>    <chr>   <chr>              <dbl> <chr>                   
#>  1 admin1b admin2a               22 tanker_trucks           
#>  2 admin1c admin2b               18 bottled_water           
#>  3 admin1c admin2b               18 water_kiosk             
#>  4 admin1c admin2b               23 dont_know               
#>  5 admin1c admin2a               20 dont_know               
#>  6 admin1c admin2b               23 water_kiosk             
#>  7 admin1c admin2a               19 dont_know               
#>  8 admin1a admin2a               22 bottled_water           
#>  9 admin1c admin2c               21 cart_with_tank_drum     
#> 10 admin1b admin2b               25 piped_into_compound     
#> # ℹ 90 more rows
#> 
#> $loa
#>     analysis_type             analysis_var group_var level
#> 1 prop_select_one                   admin1      <NA>  0.95
#> 2 prop_select_one                   admin2      <NA>  0.95
#> 3            mean         expenditure_debt      <NA>  0.95
#> 4          median         expenditure_debt      <NA>  0.95
#> 5 prop_select_one wash_drinkingwatersource      <NA>  0.95
#> 6 prop_select_one                   admin2    admin1  0.95
#> 7            mean         expenditure_debt    admin1  0.95
#> 8          median         expenditure_debt    admin1  0.95
#> 9 prop_select_one wash_drinkingwatersource    admin1  0.95
#> 
create_analysis(
  design = srvyr::as_survey(shorter_df),
  group_var = "admin1, admin2"
)
#> Joining with `by = join_by(type)`
#> Joining with `by = join_by(admin1)`
#> Joining with `by = join_by(admin2)`
#> Joining with `by = join_by(wash_drinkingwatersource)`
#> Joining with `by = join_by(admin1, admin2, wash_drinkingwatersource)`
#> $results_table
#> # A tibble: 117 × 13
#>    analysis_type analysis_var analysis_var_value group_var group_var_value  stat
#>  * <chr>         <chr>        <chr>              <chr>     <chr>           <dbl>
#>  1 prop_select_… admin1       admin1a            NA        NA               0.31
#>  2 prop_select_… admin1       admin1b            NA        NA               0.27
#>  3 prop_select_… admin1       admin1c            NA        NA               0.42
#>  4 prop_select_… admin2       admin2a            NA        NA               0.3 
#>  5 prop_select_… admin2       admin2b            NA        NA               0.39
#>  6 prop_select_… admin2       admin2c            NA        NA               0.31
#>  7 mean          expenditure… NA                 NA        NA              20.1 
#>  8 median        expenditure… NA                 NA        NA              20   
#>  9 prop_select_… wash_drinki… borehole_tubewell  NA        NA               0.04
#> 10 prop_select_… wash_drinki… bottled_water      NA        NA               0.08
#> # ℹ 107 more rows
#> # ℹ 7 more variables: stat_low <dbl>, stat_upp <dbl>, n <int>, n_total <dbl>,
#> #   n_w <dbl>, n_w_total <dbl>, analysis_key <chr>
#> 
#> $dataset
#> # A tibble: 100 × 4
#>    admin1  admin2  expenditure_debt wash_drinkingwatersource
#>    <chr>   <chr>              <dbl> <chr>                   
#>  1 admin1b admin2a               22 tanker_trucks           
#>  2 admin1c admin2b               18 bottled_water           
#>  3 admin1c admin2b               18 water_kiosk             
#>  4 admin1c admin2b               23 dont_know               
#>  5 admin1c admin2a               20 dont_know               
#>  6 admin1c admin2b               23 water_kiosk             
#>  7 admin1c admin2a               19 dont_know               
#>  8 admin1a admin2a               22 bottled_water           
#>  9 admin1c admin2c               21 cart_with_tank_drum     
#> 10 admin1b admin2b               25 piped_into_compound     
#> # ℹ 90 more rows
#> 
#> $loa
#>     analysis_type             analysis_var      group_var level
#> 1 prop_select_one                   admin1           <NA>  0.95
#> 2 prop_select_one                   admin2           <NA>  0.95
#> 3            mean         expenditure_debt           <NA>  0.95
#> 4          median         expenditure_debt           <NA>  0.95
#> 5 prop_select_one wash_drinkingwatersource           <NA>  0.95
#> 6            mean         expenditure_debt admin1, admin2  0.95
#> 7          median         expenditure_debt admin1, admin2  0.95
#> 8 prop_select_one wash_drinkingwatersource admin1, admin2  0.95
#> 
create_analysis(
  design = srvyr::as_survey(shorter_df),
  group_var = c("admin1", "admin2")
)
#> Joining with `by = join_by(type)`
#> Joining with `by = join_by(admin1)`
#> Joining with `by = join_by(admin2)`
#> Joining with `by = join_by(wash_drinkingwatersource)`
#> Joining with `by = join_by(admin1, admin2)`
#> Joining with `by = join_by(admin1, wash_drinkingwatersource)`
#> Joining with `by = join_by(admin2, admin1)`
#> Joining with `by = join_by(admin2, wash_drinkingwatersource)`
#> $results_table
#> # A tibble: 145 × 13
#>    analysis_type analysis_var analysis_var_value group_var group_var_value  stat
#>  * <chr>         <chr>        <chr>              <chr>     <chr>           <dbl>
#>  1 prop_select_… admin1       admin1a            NA        NA               0.31
#>  2 prop_select_… admin1       admin1b            NA        NA               0.27
#>  3 prop_select_… admin1       admin1c            NA        NA               0.42
#>  4 prop_select_… admin2       admin2a            NA        NA               0.3 
#>  5 prop_select_… admin2       admin2b            NA        NA               0.39
#>  6 prop_select_… admin2       admin2c            NA        NA               0.31
#>  7 mean          expenditure… NA                 NA        NA              20.1 
#>  8 median        expenditure… NA                 NA        NA              20   
#>  9 prop_select_… wash_drinki… borehole_tubewell  NA        NA               0.04
#> 10 prop_select_… wash_drinki… bottled_water      NA        NA               0.08
#> # ℹ 135 more rows
#> # ℹ 7 more variables: stat_low <dbl>, stat_upp <dbl>, n <int>, n_total <dbl>,
#> #   n_w <dbl>, n_w_total <dbl>, analysis_key <chr>
#> 
#> $dataset
#> # A tibble: 100 × 4
#>    admin1  admin2  expenditure_debt wash_drinkingwatersource
#>    <chr>   <chr>              <dbl> <chr>                   
#>  1 admin1b admin2a               22 tanker_trucks           
#>  2 admin1c admin2b               18 bottled_water           
#>  3 admin1c admin2b               18 water_kiosk             
#>  4 admin1c admin2b               23 dont_know               
#>  5 admin1c admin2a               20 dont_know               
#>  6 admin1c admin2b               23 water_kiosk             
#>  7 admin1c admin2a               19 dont_know               
#>  8 admin1a admin2a               22 bottled_water           
#>  9 admin1c admin2c               21 cart_with_tank_drum     
#> 10 admin1b admin2b               25 piped_into_compound     
#> # ℹ 90 more rows
#> 
#> $loa
#>      analysis_type             analysis_var group_var level
#> 1  prop_select_one                   admin1      <NA>  0.95
#> 2  prop_select_one                   admin2      <NA>  0.95
#> 3             mean         expenditure_debt      <NA>  0.95
#> 4           median         expenditure_debt      <NA>  0.95
#> 5  prop_select_one wash_drinkingwatersource      <NA>  0.95
#> 6  prop_select_one                   admin2    admin1  0.95
#> 7             mean         expenditure_debt    admin1  0.95
#> 8           median         expenditure_debt    admin1  0.95
#> 9  prop_select_one wash_drinkingwatersource    admin1  0.95
#> 10 prop_select_one                   admin1    admin2  0.95
#> 11            mean         expenditure_debt    admin2  0.95
#> 12          median         expenditure_debt    admin2  0.95
#> 13 prop_select_one wash_drinkingwatersource    admin2  0.95
#>